Effective Operators, Neutrino Mass, Muon Decay, and Higgs Production

Jennifer Kile

California Institute of Technology INFO '07, July 3, 2007

Topics Covered

- Erwin, JK, Ramsey-Musolf, Wang: Constraining new physics contributions to μ decay parameters using ν mass. (PRD 75, 033005)
- JK, Ramsey-Musolf: Constraints on contributions of fermionic operators to Higgs production at a linear collider. (0705.0554, submitted to PRD)

Effective Operators and New Physics

- Expect new physics (NP) above some energy scale Λ .
- At low energy, will manifest itself as effective operators

$$\mathcal{L}_{\text{eff}}^{(n)} = \sum_{j} \frac{C_j^n(\mu)}{\Lambda^{n-4}} \mathcal{O}_j^{(n)}(\mu) + \text{h.c.}$$

which we take to be constructed from SM fields plus right-handed Dirac ν .

- ► Higher-dimension operators suppressed by increasing factors of $\Lambda \rightarrow$ Just take n=6.
- Place limits on $C_j^6 \to \text{limits}$ on contributions of $\mathcal{O}_j^{(6)}$ to observable processes.

Muon Decay Parameters

The differential μ decay spectrum can be written as

$$\frac{d^2\Gamma}{dx \, d\cos\theta} = \frac{m_{\mu}}{4\pi^2} W_{e\mu}^4 G_{\mu}^2 \sqrt{x^2 - x_0^2} \\
\times \left[F_{IS}(x) \pm P_{\mu} \cos\theta \, F_{AS}(x) \right] \\
\times \left[1 + \vec{\zeta} \cdot \vec{P}_e(x, \theta) \right]$$

where

$$W_{e\mu}=(m_{\mu}^2+m_e^2)/2m_{\mu}=$$
 maximum e energy $x=E_e/W_{e\mu}$ and $x_0=m_e/W_{e\mu}$ $\vec{P}_{\mu},\,\vec{P}_e=\mu$ and e polarizations $\vec{\zeta}$ dependent on experimental configuration. $F_{IS}(x)$ and $F_{AS}(x)$ give isotropic & anisotropic components.

Michel Parameters

 $F_{IS}(x)$ and $F_{AS}(x)$ can be written in terms of Michel Parameters (MPs) ρ , η , ξ , and δ :

$$F_{IS} = x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x)$$

$$F_{AS} = \frac{1}{3}\xi\sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3}\delta\left(4x - 3 + \left(\sqrt{1 - x_0^2} - 1\right)\right)\right]$$

Michel parameters (MPs) ρ , δ and $P_{\mu}\xi$ will be measured by TWIST to a precision of a few $\times 10^{-4}$.

Can we use ν mass to put constraints on how NP could affect μ decay parameters?

New Physics Contributions to μ Decay

New Physics contributions to μ decay can be described by basis of four-fermion operators:

$$\mathcal{L}^{\mu-\text{decay}} = \frac{4G_{\mu}}{\sqrt{2}} \sum_{\gamma, \epsilon, \mu} g_{\epsilon\mu}^{\gamma} \bar{e}_{\epsilon} \Gamma^{\gamma} \nu \bar{\nu} \Gamma_{\gamma} \mu_{\mu}$$

$$\Gamma^{\gamma}=1$$
(S), γ^{α} (V), $\sigma^{\alpha\beta}/\sqrt{2}$ (T) μ and ϵ : μ^{-} , e^{-} chirality

- SM: $g_{LL}^V = 1$, others 0.
- ▶ MPs can be expressed in terms of $g_{\epsilon u}^{\gamma}$'s, ex:

$$\frac{3}{4} - \rho = \frac{3}{4} |g_{LR}^V|^2 + \frac{3}{2} |g_{LR}^T|^2 + \frac{3}{4} \operatorname{Re} \left(g_{LR}^S g_{LR}^{T*} \right) + (L \leftrightarrow R)$$

Relation of μ Decay to Neutrino Mass

ightharpoonup Two operators which can contribute to m_{ν} after EWSB are

$$\mathcal{O}_{M,\,AD}^{(4)} \equiv \bar{L}^A \tilde{\phi} \nu_R^D \implies \delta m_{\nu}^{(4)AD} = \frac{-v}{\sqrt{2}} C_{M,\,AD}^4 \left(v\right)$$

$$\mathcal{O}_{M,\,AD}^{(6)} \equiv \bar{L}^A \tilde{\phi} \nu_R^D \left(\phi^+ \phi\right) \implies \delta m_{\nu}^{(6)AD} = \frac{-v^3}{2\sqrt{2}\Lambda^2} C_{M,\,AD}^6 \left(v\right)$$

$$A, B, C, D = \text{flavor indices}$$

$$\tilde{\phi} = i\tau^2 \phi^*$$

Some terms in the NP Lagrangian $\mathcal{L}^{\mu-\mathrm{decay}}$ mix with the 4D and 6D mass operators at 1-loop order.

These terms will contribute at 1-loop to $m_{\nu}!$

We can use experimental limits on m_{ν} to constrain NP contributions to μ decay!

General Strategy

Consider all 6D $SU(2) \times U(1)$ -invariant operators which contribute to m_{ν} and/or μ decay.

$$\mathcal{L}_{\text{eff}}^{(6)} = \sum_{j} \frac{C_{j}^{6}(\mu)}{\Lambda^{2}} \mathcal{O}_{j}^{(6)}(\mu) + \text{h.c.}$$

- ▶ Calculate the 1-loop contributions of these operators to m_{ν} .
- Limits on $m_{\nu} \to \text{Limits on } C_j^6(\mu)$.
- Limits on $C_j^6(\mu) \to \text{Limits}$ on NP contributions to the MPs.

All results are computed to 1st order in Yukawa coupling f_{AA} . We take upper limit on ν mass matrix elements of ~ 1 eV.

 \blacktriangleright We find 5 linearly independent op's which contribute to m_{ν} :

Operator	μ Decay Contribution
$\mathcal{O}_{B,AD}^{(6)} = g_1(\bar{L}^A \sigma^{\mu\nu} \widetilde{\phi}) \nu_R^D B_{\mu\nu}$	$(m_{\mu}/v)^2$ suppressed
$\mathcal{O}_{W,AD}^{(6)} = g_2(\bar{L}^A \sigma^{\mu\nu} \tau^a \widetilde{\phi}) \nu_R^D W_{\mu\nu}^a$	$(m_\mu/v)^2$ suppressed
$\mathcal{O}_{M,AD}^{(6)} = (\bar{L}^A \widetilde{\phi} \nu_R^D)(\phi^+ \phi)$	No
$\mathcal{O}_{\tilde{V},AD}^{(6)} = i(\bar{\ell}_R^A \gamma^\mu \nu_R^D)(\phi^+ D_\mu \widetilde{\phi})$	$g^V_{RL,LR}$
$\mathcal{O}_{F,ABCD}^{(6)} = \epsilon^{ij} \bar{L}_i^A \ell_R^C \bar{L}_j^B \nu_R^D$	$g_{RL,LR}^{S,T}$

- ▶ Other 6D op's contributing to m_{ν} linear combinations of above.
- All other 6D operators which could contribute significantly to μ decay affect only $g_{\epsilon\mu}$ with $\epsilon=\mu$.

 $m_{
u}$ gives us handle on $g_{RL,LR}^{S,V,T}$!

Mixing With 4D Mass Operator

We obtain order-of-magnitude estimates for the mixing of 6D operators into $\mathcal{O}_{M-AD}^{(4)}$:

$$\mathcal{O}_{B,AD}^{(6)} \to C_{M,AD}^{4} \sim \frac{\alpha}{4\pi \cos^{2} \theta_{W}} C_{B,AD}^{6}$$

$$\mathcal{O}_{W,AD}^{(6)} \to C_{M,AD}^{4} \sim \frac{3\alpha}{4\pi \sin^{2} \theta_{W}} C_{W,AD}^{6}$$

$$\mathcal{O}_{\tilde{V},AD}^{(6)} \to C_{M,AD}^4 \sim \frac{f_{AA}}{16\pi^2} C_{\tilde{V},AD}^6$$

$$l_R$$
 L
 V_R^D
 L_A

$$\mathcal{O}_{F,BABD}^{(6)} \rightarrow C_{M,AD}^4 \sim \frac{f_{BB}}{4\pi^2} C_{F,BABD}^6$$

$$\mathcal{O}_{F,\,ABBD}^{(6)} \rightarrow C_{M,\,AD}^4 \sim \frac{f_{BB}}{16\pi^2} C_{F,\,ABBD}^6$$

Mixing With 6D Mass Operator

For mixing into $\mathcal{O}_{M,AD}^{(6)}$, must do complete RG analysis. Must take into account mixing between all 6D op's:

$$\mathcal{O}_{B,AD}^{(6)},\,\mathcal{O}_{W,AD}^{(6)},\,\mathcal{O}_{M,AD}^{(6)},\,\mathcal{O}_{\tilde{V},AD}^{(6)},\,\mathcal{O}_{F,AAAD}^{(6)},\,\mathcal{O}_{F,ABBD}^{(6)},\,\mathcal{O}_{F,BABD}^{(6)}$$
 e.g.,

and many more....

Calculations done using Dim Reg in background field gauge.

Renormalize using minimal subtraction.

Then solve for coefficients $C_j^6(v)$ using the RGE.

Mixing With 6D Mass Operator

We eventually get $C^6_{M,AD}(v)$ in terms of the $C(\Lambda)$'s:

$$C_{M,AD}^{6}(v) = C_{M,AD}^{6}(\Lambda) \left[1 - \left(\frac{9(\alpha_{1} + 3\alpha_{2})}{16\pi} - \frac{3\lambda}{2\pi^{2}} \right) \ln \frac{v}{\Lambda} \right] - \left[-6\alpha_{1}(\alpha_{1} + \alpha_{2})C_{B,AD}^{6}(\Lambda) + 6\alpha_{2}(\alpha_{1} + 3\alpha_{2})C_{W,AD}^{6}(\Lambda) + \left(\frac{9\alpha_{2}f_{AA}}{8\pi} - \frac{3f_{AA}\lambda}{8\pi^{2}} \right) C_{\tilde{V},AD}^{6}(\Lambda) \right] \ln \frac{v}{\Lambda}$$

Constraints from mixing into 6D mass op $\sim \frac{v^2}{\Lambda^2}$ weaker than expectations from 4D op.

Note only $C_{\tilde{V},AD}$ multiplied by fermion Yukawa coupling f_{AA} . Will use this result in Higgs production analysis later...

Contributions to g's

Expectations on contributions of the 6D operators to the g's:

Source	$ g_{LR}^S $	$ g_{LR}^T $	$ g_{RL}^S $	$ g_{RL}^T $	$ g_{LR}^V $	$ g_{RL}^V $
$\overline{\mathcal{O}_{F,122D}^{(6)}}$	4×10^{-7}	2×10^{-7}	-	-	-	-
$\mathcal{O}_{F,212D}^{(6)}$	4×10^{-7}	-	-	-	-	-
$\mathcal{O}_{F,112D}^{(m 6)}$	None	None	-	-	-	-
$\mathcal{O}_{F,211D}^{(6)}$	-	-	8×10^{-5}	4×10^{-5}	-	-
$\mathcal{O}_{F,121D}^{(6)}$	-	-	8×10^{-5}	-	-	-
$\mathcal{O}_{F,221D}^{(6)}$	-	-	None	None	-	-
$\mathcal{O}_{ ilde{V}_{+}2D}^{(ilde{6})}$	-	-	-	-	8×10^{-7}	-
$\mathcal{O}_{ ilde{V},2D}^{(6)} \ \mathcal{O}_{ ilde{V},1D}^{(6)}$	-	-	-	-	-	2×10^{-4}
Global*	0.088	0.025	0.417	0.104	0.036	0.104
Two-loop†	10^{-4}	10^{-4}	10^{-2}	10^{-2}	10^{-4}	10^{-2}

^{*}Gagliardi et. al

[†] Prezeau & Kurylov

Contributions to g's

- Expected size of g's
 - ~ 4 orders of mag. stronger than experimental results,
 - ~ 2 orders of mag. stronger than results of Prezeau & Kurylov.
- Two operators, $\mathcal{O}_{F,112D}^{(6)}$ and $\mathcal{O}_{F,221D}^{(6)}$, contribute to μ decay but are not directly constrained by m_{ν} .
- Large contribution from $\mathcal{O}_{F,\,112D}^{(6)}$ or $\mathcal{O}_{F,\,221D}^{(6)}$ could indicate interesting flavor physics.
- Limits could be evaded if we allow fine-tuning between operators.

Contributions to Michel Parameters

Of ρ , δ and $P_{\mu}\xi$, only ρ is independent of $g_{RR,LL}^{S,V,T}$:

$$\frac{3}{4} - \rho = \frac{3}{4} \left| g_{LR}^V \right|^2 + \frac{3}{2} \left| g_{LR}^T \right|^2 + \frac{3}{4} \operatorname{Re} \left(g_{LR}^S g_{LR}^{T*} \right) + (L \leftrightarrow R)$$

If all $\mathcal{O}_{F,ABCD}^{(6)}$ have similar coefficients, would naively expect contribution to $\frac{3}{4} - \rho \lesssim 10^{-7}$.

If TWIST sees a nonzero $\frac{3}{4} - \rho$, might be sign of some interesting flavor-dependent physics.

μ Decay Summary

No Michel Parameters directly constrained, but....

- $m_{
 u} \lesssim 1eV
 ightharpoonup {
 m Model-independent}$ expectations on $g^V_{RL,LR}$ 4 orders of magnitude tighter than current experimental results.
- With the exception of 2 operators unconstrained due to their flavor structure, contributions to $g_{RL,LR}^{S,T}$ similarly constrained.
- Two unconstrained operators might be the first place to look if TWIST sees nonzero $\rho \frac{3}{4}$.
- PRD 75, 033005, hep-ph/0602240.

Higgs Production at a Linear e^+e^- Collider

New Physics and the Higgs Cross-Section

- Can we constrain how NP could show up in the Higgs production cross-section at a linear e^+e^- collider?
- Operators containing only Higgs and gauge boson fields done elsewhere (Barger et al, Manohar & Wise).
- What about operators containing fermions?
- ► Can operators containing ν_R 's affect the production cross-section?

SM Higgs Production at e^+e^- Collider

Higgs Production at LC occurs mainly via 3 processes:

Higgsstrahlung (HZ)

$$f\bar{f} = q\bar{q}, \nu\bar{\nu}, \ell^+\ell^-$$

$$W^+W^-$$
-fusion (WWf)

 $\begin{array}{ll} \text{final} & \text{state} \\ \text{w/} \ \nu_e \bar{\nu}_e \end{array}$

ZZ-fusion (ZZf)

 $\begin{array}{ccc} \text{final} & \text{state} & \text{w/} \\ e^+e^- & \end{array}$

SM Higgs Production

Higgs Production Channels

- ► Higgs + jets $\sim 65\%$ of HZ \rightarrow important at low \sqrt{s} .
- ► Higgs + missing energy 100% of WWf, $\sim 20\%$ of HZ \rightarrow important at high \sqrt{s} .
- Higgs + charged leptons
 e⁺e⁻: 100% of ZZf, clean channel for mass reconstruction
 & cross-section measurement.

 $\mu^+\mu^-$: important for mass recon. & cross-section.

 $\tau^+\tau^-$: not as useful for mass reconstruction.

Expected statistical error on cross-section $\sim 3\%$ for combined He^+e^- , $H\mu^+\mu^-$ channels w/ 500 fb^{-1} of data.

General Strategy

- Consider all 6D operators containing fermion and Higgs fields.
- Include right-handed (Dirac) neutrino.
- Ignoring changes in couplings in SM Higgs production diagrams caused by operator insertion (constrained to be small).
- Instead, looking at cases where operators inserted into new production diagrams.
- Leaving out $Ht\bar{t}$ final state; ignoring Higgs decay.

Class A, Mass Op's $(A, B = \text{flavor indices}, \widetilde{\phi} = i\tau^2\phi^*)$:

$$\mathcal{O}_{M,AB}^{L} \equiv (\bar{L}^{A} \phi \ell_{R}^{B})(\phi^{+} \phi) + \text{h.c.}$$

$$\mathcal{O}_{M,AB}^{\nu} \equiv (\bar{L}^A \widetilde{\phi} \nu_R^B) (\phi^+ \phi) + \text{h.c.}$$

Plus analogous terms for quarks.

Highly mass-suppressed → Will not consider further.

Class B Operators: Operators w/o ν_R :

$$\mathcal{O}_{VR,AB} \equiv i(\bar{f}_R^A \gamma^\mu f_R^B)(\phi^+ D_\mu \phi) + \text{h.c.}$$

$$\mathcal{O}_{VL,AB} \equiv i(\bar{F}^A \gamma^\mu F^B)(\phi^+ D_\mu \phi) + \text{h.c.}$$

$$\mathcal{O}_{VL\tau,AB} \equiv i(\bar{F}^A \gamma^\mu \tau^a F^B)(\phi^+ \tau^a D_\mu \phi) + \text{h.c.}$$

$$\mathcal{O}_{W,AB}^f \equiv g_2(\bar{F}^A \sigma^{\mu\nu} \tau^a \phi) f_R^B W_{\mu\nu}^a + \text{h.c.}$$

$$\mathcal{O}_{B,AB}^f \equiv g_1(\bar{F}^A \sigma^{\mu\nu} \phi) f_R^B B_{\mu\nu} + \text{h.c.}$$

F: left-handed fermion doublet f_R : right-handed fermion

Class A ops can contribute to all final states.

Class C Operators: Operators containing ν_R :

$$\mathcal{O}_{V\nu,AB} \equiv i(\bar{\nu}_R^A \gamma^\mu \nu_R^B)(\phi^+ D_\mu \phi) + h.c.$$

$$\mathcal{O}_{\tilde{V},AB} \equiv i(\bar{\ell}_R^A \gamma^\mu \nu_R^B)(\phi^+ D_\mu \tilde{\phi}) + h.c.$$

$$\mathcal{O}_{W,AB} \equiv g_2(\bar{L}^A \sigma^{\mu\nu} \tau^a \tilde{\phi}) \nu_R^B W_{\mu\nu}^a + h.c.$$

$$\mathcal{O}_{B,AB} \equiv g_1(\bar{L}^A \sigma^{\mu\nu} \tilde{\phi}) \nu_R^B B_{\mu\nu} + h.c.$$

Will only contribute to \mathbb{Z} final state.

Diagrams With Class B Operators

Only for A=B=e. Can have on-shell Z. $f=q,\ell,\nu$

Gauge Boson very off-shell $(\sqrt{s}>>M_Z)$ Diagram suppressed.

Only for $A, B = e, \ell$ or ℓ, e . Flavor-changing diagrams will not interfere w/SM.

Most important Class A Op's will have A = B = e!

 $\mathcal{O}_{VR,AB}$

$$\mathcal{O}_{VR,AB} \equiv i(\bar{f}_R^A \gamma^\mu f_R^B)(\phi^+ D_\mu \phi) + \text{h.c.} \rightarrow \bar{f}_R^A f_R^B ZH \text{ vertex.}$$

Will consider two cases:

- ► A = B = e→ Will contribute to all final states.
- ► $A = B \neq e$ → Final states of $\bar{f}_R^A f_R^B$.

Will ignore FCNC case here.

$\mathcal{O}_{VR,ee}$

 $q\bar{q}, \mu^+\mu^-, \tau^+\tau^-, \nu\bar{\nu}$ channels: only Diag (1) contributes.

Diagram 1

SM HZ

Compare to SM HZ diagram:

Interference with HZ is related to SM HZ by

$$\frac{\sigma_{1-HZ\, \rm int}}{\sigma_{HZ}} \ = \ -\frac{C_{VR,ee}v^2}{\Lambda^2} \frac{(s-M_Z^2)}{M_Z^2} \frac{\sin^2\theta_W}{2(\sin^4\theta_W - \frac{1}{2}\sin^2\theta_W + \frac{1}{8})}$$

$$\sim \ -54(-220) \frac{C_{VR,ee}v^2}{\Lambda^2} \quad \text{for } \sqrt{s} = 500\, \text{GeV} \, (1\text{TeV})$$

Can be large for $\sqrt{s} >> M_Z!$

$\mathcal{O}_{VR,ee}$

 $\nu_e \bar{\nu_e}$ in final state: interference w/SM WWf suppressed by m_e . e^+e^- in final state: must include diagrams (2) and (3), as well as SM ZZf and interference.

Take
$$\frac{C_{VR,ee}v^2}{\Lambda^2}$$
 $\sim \frac{1}{16\pi^2} \sim 10^{-2}$

For
$$\sqrt{s}=1$$
 TeV, $q\bar{q},\,\mu^+\mu^-,\,\tau^+\tau^-$ line at -2.2 .

Only Diag. (2) is relevant:

Strongly kinematically suppressed due to off-shell Z.

Taking
$$\frac{C_{VR,\mu\mu}v^2}{\Lambda^2}=10^{-2}$$
,

Results for $\mathcal{O}_{VR,\tau\tau}$ identical. Results for $\mathcal{O}_{VR,qq}$ similar.

 $\mathcal{O}_{VL,ee}$

 $\mathcal{O}_{VL,ee} \equiv i(\bar{L}^e \gamma^\mu L^e)(\phi^+ D_\mu \phi) + \mathrm{hc} \rightarrow \bar{e}_L e_L ZH$, $\bar{\nu_e} \nu_e ZH$ vertices. Interference w/ WWf not mass-suppressed. Otherwise similar to $\mathcal{O}_{VR,ee}$.

$$\frac{\sigma_{1-HZint}}{\sigma_{HZ}} = \frac{C_{VL,ee}v^2}{\Lambda^2} \frac{(s - M_Z^2)}{M_Z^2} \frac{(\frac{1}{2} - \sin^2\theta_W)}{2(\sin^4\theta_W - \frac{1}{2}\sin^2\theta_W + \frac{1}{8})}$$

$$\sim 62(255) \frac{C_{VL,ee}v^2}{\Lambda^2} \quad \text{for } \sqrt{s} = 500 \, \text{GeV} \, (1\text{TeV})$$

Will not consider $\mathcal{O}_{VL,\ell\ell}$ and $\mathcal{O}_{VL,qq}$ cases.

Higgs Mass/GeV

$\mathcal{O}_{VL au,ee}$

- $ightharpoonup Hq\bar{q},\, H\mu^+\mu^-$ and $H\tau^+\tau^-$: same as $\mathcal{O}_{VL,ee}$.
- ▶ Contains charged current: $\bar{e}\nu W^-$ vertex.
- Must include diagram (3) in missing energy channel:

$\mathcal{O}_{VL au,ee}$

Will not consider $\mathcal{O}_{VL au,\ell\ell}$ and $\mathcal{O}_{VL au,qq}$ cases.

$\mathcal{O}_{W\ell,AB}$ and $\mathcal{O}_{B\ell,AB}$

 $\mathcal{O}_{W\ell,AB}$, $\mathcal{O}_{B\ell,AB} \to \text{charged fermion EDM, mag. mom.}$

- $ightharpoonup A = B = e \text{ or } \mu$: constrained by g-2, EDMs.
- ► $A, B = e, \mu, \tau, A \neq B$: limits from $\tau \to \mu/e\gamma, \mu \to e\gamma$. \to Only consider $A = B = \tau, A = q^A, B = q^B$.
- Interference with SM HZ Yukawa-suppressed.
- $C_{j,\tau\tau}v^2/\Lambda^2=10^{-2}$ \rightarrow , non-interference terms give <0.1% (2%) to $H\tau^+\tau^-$ at $\sqrt{s}=500$ GeV (1 TeV).
- ightharpoonup Quark operator contribution differs by factor N_C .
- Interference with SM can be comparable.
- ▶ Actual limits $> 10^{-2}$; take as expected upper limit.

Diagrams With Class C Operators

All Class C Operators contribute only to ν final state. No interference w/SM processes.

 $\mathcal{O}_{V\nu,\,AB}$, $\mathcal{O}_{W,\,AB}$, $\mathcal{O}_{B,\,AB}$ contribute. A,B= anything.

Diagram suppressed by off-shell gauge boson.

Only op's with charged-current components contribute:

$$\mathcal{O}_{ ilde{V},\,eB}$$
, $\mathcal{O}_{W,\,eB}$.

Expect largest effects from $\mathcal{O}_{\tilde{V},\,eB}$, $\mathcal{O}_{W,\,eB}$ for same C_j .

Class C Operators

For
$$\frac{C_j v^2}{\Lambda^2} = 10^{-2}$$
,

Taking $\frac{C_j v^2}{\Lambda^2} = 10^{-2}$ conservative: Michel spectrum implies limit on $\frac{C_{\tilde{V}} v^2}{\Lambda^2} \sim 0.2$.

Limits on Class B Operators

Most important operators: $\mathcal{O}_{VR,ee}$, $\mathcal{O}_{VL,ee}$, $\mathcal{O}_{VL\tau,ee}$. All affect coupling of Z to e^+e^- , Z-pole observables. In addition, $\mathcal{O}_{VL\tau,ee}$ will affect $W^+e\bar{\nu}$ vertex, G_{μ} :

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{g_2^2}{8M_W^2} \left(1 + \Delta r_{\mu}\right) \quad \text{and} \quad \Delta r_{\mu}^{\text{new}} = \frac{C_{L\tau}^{ee} v^2}{\Lambda^2}$$

→ will affect many SM observables.

Using GAPP to fit C_j 's to precision electroweak data: Z-pole, $\nu-e$ scattering, Moller scattering, Q_W , G_μ .

Op's of other flavors: get basic limits from Z partial widths using ZFITTER, compare to exp.

Limits on Class B Ops at 95% CL

Op	$Min(rac{C^j v^2}{\Lambda^2})$	$Max(rac{C^j v^2}{\Lambda^2})$	
\mathcal{O}_{VR}^{ee}	-0.0012	0.00044	
\mathcal{O}_{VL}^{ee}	-0.00015	0.0012	GAPP fit results
$\mathcal{O}_{VL au}^{ee}$	-0.00036	0.0011	
$\overline{\mathcal{O}_{VR,\mu\mu}}$	-0.0027	0.0020	
$\mathcal{O}_{VR, au au}$	-0.0050	0.0007	Results from
$\mathcal{O}_{VL,\mu\mu}$	-0.0017	0.0023	$\Gamma(Z \to \ell^{A\pm} \ell^{B\mp})$
$\mathcal{O}_{VL, au au}$	-0.0006	0.0043	
$\mathcal{O}_{VL au,\mu\mu}$	-0.0039	0.0054	
$\mathcal{O}_{VL au, au au}$	-0.0006	0.0043	
$\mathcal{O}_{j,e\mu}$	-0.0071	0.0071	
$\mathcal{O}_{j,e au}$	-0.017	0.017	

Contributions of Class B Ops to Higgs Production

Corresponding changes in $Hq\bar{q}$, $H\mu^+\mu^-$, $H\tau^+\tau^-$ x-sections from interference with SM:

$$\begin{array}{lll} \frac{\delta\sigma}{\sigma_{SM}} \text{ at } 95\% \text{ CL:} \\ \sqrt{s} = 500 \, \text{GeV} & \sqrt{s} = 1 \, \text{TeV} \\ \mathcal{O}_{VR}^{ee} \ : \ -2\%, +6\% & \mathcal{O}_{VR}^{ee} \ : \ -10\%, +26\% \\ \mathcal{O}_{VL}^{ee} \ : \ -1\%, +7\% & \mathcal{O}_{VL}^{ee} \ : \ -4\%, +31\% \\ \mathcal{O}_{VL\tau}^{ee} \ : \ -2\%, +7\% & \mathcal{O}_{VL\tau}^{ee} \ : \ -9\%, +28\% \end{array}$$

with smaller numbers for He^+e^- , $H\nu\bar{\nu}$ channels. Non-interference terms can add 3% to $Hq\bar{q}$, $H\mu^+\mu^-$ x-sections for $\sqrt{s}=1$ TeV, <1% for $\sqrt{s}=500$ GeV and for He^+e^- , $H\nu\bar{\nu}$ channels.

Limits on Class C Operators

 $\mathcal{O}_{V\nu,AB}$ limit from invisible Z width (1.6 σ below expectation):

$$\sum_{A,B} \left| \frac{C_{V \nu}^{AB} v^2}{\Lambda^2} \right|^2 < .0068 \text{ at } 95\% \text{ CL}$$

 $\mathcal{O}_{W,AB}$, $\mathcal{O}_{B,AB}$ bounded by ν magnetic moments $(\mu_{\nu} < 10^{-10} \ \mu_B)$:

$$\left| \frac{C_{B,W}^{AB} v^2}{\Lambda^2} \right| \lesssim 10^{-5}$$

For $\mathcal{O}_{\tilde{V},AB}$, we take results from μ decay analysis.

Limits on Class C Operators

So, for $\mathcal{O}_{\tilde{V},AB}$, we take result from mixing of 6D operators into 6D mass operator:

$$\left| \frac{C_{\tilde{V}}^{eB} v^2}{\Lambda^2} \ln \frac{v}{\Lambda} \right| = (0.5 - 3) \times 10^{-3}$$

with range on $C_{\tilde{V}}^{eB}$ for $114\,\text{GeV} < M_H < 186\,\text{GeV}$.

Contributions of Class C Op's to Higgs production negligible!

Higgs Summary

- Three operators, $\mathcal{O}_{VR,ee}$, $\mathcal{O}_{VL,ee}$, and $\mathcal{O}_{VL\tau,ee}$, could have potentially observable effects on $Hq\bar{q}$, $H\mu^+\mu^-$, $H\tau^+\tau^-$ channels, with smaller effects in other channels.
- Same operators with $A=B=\mu, \tau, q$ contribute negligibly.
- For reasonable value of Cv^2/Λ^2 , charged-fermion magnetic moment operators would have small contribution.
- Poperators which contain ν_R 's are constrained by $\Gamma_{Z,inv}$, ν magnetic moments, and ν mass to have negligible contribution.
- 0705.0554, submitted to PRD.

Flavor-changing Neutral Currents

Can also consider flavor non-conserving case $A \neq B$. Only consider $He^{\pm}\tau^{\mp}$, $He^{\pm}\mu^{\mp}$ cases; $H\tau^{\pm}\mu^{\mp}$ small.

FCNCs in Class A Operators

Get limits on $\mathcal{O}_{VR,e\ell}$, $\mathcal{O}_{VL,e\ell}$, and $\mathcal{O}_{VL\tau,e\ell}$ for $\ell \neq e$ using limits on $\Gamma(Z \to e^{\pm}\mu^{\mp}, e^{\pm}\tau^{\mp})$:

95% CL ranges (same for all 3 operators):

$$\frac{C_{j,e\mu}v^2}{\Lambda^2}$$
: ± 0.0071 , $\frac{C_{j,e\tau}v^2}{\Lambda^2}$: ± 0.017

For $He^{\pm}\tau^{\pm}$ case, these limits give (events/ ab^{-1} data):

M_H/GeV	100	300	500
$\mathcal{O}_{VR,e\ell}$	81.	40.	12
$\mathcal{O}_{VL,e\ell}$, $\mathcal{O}_{VL au,e\ell}$	78.	38.	12

Numbers smaller for $e^{\pm}\mu^{\pm}$, $\sqrt{s}=500$ GeV cases. Observable?